Mesin Absensi Face Recognition Berbasis Raspberry Pi
نویسندگان
چکیده
Mesin absensi sidik jari gagal merekap dengan kondisi yang terluka, tergores, kulit terkelupas dan lainnya sehingga kehadiran tidak tercatat. Penelitian ini bertujuan membuat mesin pengenalan wajah untuk meminimalisir kegagalan seperti pada jari. merupakan pengembangan penelitian sebelumnya sistem Radio Frequency Identification (RFID) karena RFID dapat dicurangi. Penggabungan rekognisi sebuah raspberry pi diharapkan menimalisir saat melakukan absensi. Seandainya terjadi wajah, pengguna RFID. Absensi hanya dilakukan ketika deteksi wajah. Untuk mengetahui persentase keberhasilan keakurasian mesin, setiap beberapa kali percobaan. Selanjutnya dicatat jumlah dihitung nilai akurasinya metode perhitungan akurasi. Hasil percobaan identifikasi diperoleh pertama sebesar 53 %, kedua 48 ketiga 45 % keempat 52 %. mampu memprediksi 4 gambar posisi berbeda waktu rata-rata proses selama 7 detik. Kata kunci : Face recognition, absensi, . The fingerprint attendance machine failed to record with injured, scratched, peeled finger skin and others so that was not recorded. This research is a development of previous system because can be rigged. incorporation facial recognition on an expected minimize failures during attendance. If there failure, the user make Attendance in this only done when face detection failure. To find out percentage success accuracy machine, each performs several trials. Furthermore, number successes recorded value calculated using calculation method. results identification experiment showed first 53%, second 48%, third 45% fourth 52%. able predict images different positions average process time seconds. Keywords: pi.
منابع مشابه
Face recognition system on Raspberry Pi
An embedded face recognition system based on the Raspberry Pi single-board computer is proposed in this paper. Face recognition system consists of face detection and face localization using Haar feature-based cascade classifier. Face features are extracted using weighted Local Binary Pattern algorithm. Developed system performs one full face analysis in 110 ms. Comparison of two biometric sampl...
متن کاملSleep Disorder Recognition using Wearable Sensor and Raspberry Pi
Sleep analysis is usually done inside a sleep laboratory under close supervision of doctors with the help of cardiac rhythm using electro cardiography (ECG), breathing patterns, brain activities using electro encephalography (EEG), eye movement using electrooculography (EOG) and muscle activity during sleep. The data collected through these devices is thus utilized for further analysis and has ...
متن کاملAgPi: Agents on Raspberry Pi
The Raspberry Pi and its variants have brought with them an aura of change in the world of embedded systems. With their impressive computation and communication capabilities and low footprint, these devices have thrown open the possibility of realizing a network of things in a very cost-effective manner. While such networks offer good solutions to prominent issues, they are indeed a long way fr...
متن کاملEasy as Pi: A Network Coding Raspberry Pi Testbed
In the near future, upcoming communications and storage networks are expected to tolerate major difficulties produced by huge amounts of data being generated from the Internet of Things (IoT). For these types of networks, strategies and mechanisms based on network coding have appeared as an alternative to overcome these difficulties in a holistic manner, e.g., without sacrificing the benefit of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Voteteknika
سال: 2022
ISSN: ['2716-3989']
DOI: https://doi.org/10.24036/voteteknika.v10i4.119557